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A New Phase-Shifterless Beam-Scanning Technique
Using Arrays of Coupled Oscillators

P. Liao, Student Member, IEEE, and R. A. York, Member, IEEE

Abstract— A method for electronic beam scanning in linear
arrays of antenna-coupled oscillators is introduced which elimi-
nates the need for phase shifters. It is shown that a constant phase
progression can be established by slightly detuning the peripheral
array elements, while maintaining mutual synchronization. This
unusual nonlinear behavior is explained using coupled Van der
Pol equations. A stability analysis provides theoretical limitations
on the achievable inter-element phase shift. When the phase of
the coupling is zero, the theory predicts an inter-element phase
shift that can be varied continuously over the range —90° <
Af8 < +90° and is independent of the number of oscillators
in the array. An experimental four-element planar MESFET
array was built, operating at 10 GHz with close to zero coupling
phase, giving a measured phase progression that was continuously
variable over the range —88° < A6 < 66°.

I. INTRODUCTION

UASI-OPTICAL power-combining using arrays of cou-
Qpled microwave or millimeter-wave oscillators is cur-

rently under investigation by many groups [1]-[7].
In this approach, a large number of solid-state oscillator
cells are fabricated in a one-or two-dimensional periodic
arrangement, where the load of each oscillator is a planar
antenna. Mutual coupling between the oscillators-—via free-
space, transmission-line circuits, or external cavities—enables
them to synchronize to a common frequency through the phe-
nomenon of injection-locking [11]-[12]. Much of the research
effort to date, including recent theoretical work [8]-[10],
has focused primarily on achieving this mutual synchroni-
zation. In this paper, we extend the work to encompass phase
control and synthesis, leading to a new method for electronic
beam scanning.

The principles of beam-scanning in phased-arrays are well
known. In a conventional phased-array (Fig. 1(a)), a constant
phase progression is established using electronically-controlled
phase-shifters at each array element. This approach is concep-
tually simple, but can be complicated in practice, especially in
recent efforts to develop monolithic T/R modules where it is
difficult to integrate the phase-shifter circuitry, RF distribution
network, control signals and DC bias lines along with the
planar antennas. An alternative is the beam-scanning technique
described in this paper, depicted in Figure 1b. When the free-
running frequencies of the oscillators are within a collective
locking-range, the oscillators will spontaneously synchronize
with a phase relationship that is controlled by the original
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Fig. 1. (a) Block diagram of a conventional phased-array system for
beam-scanning, and (b} Hllustration of the proposed technique. The dynamics
of the injection-locking process establishes a constant phase progression across
an array of coupled-oscillators when the end elements are detuned in a
particular way.

distribution of free-running frequencies [17]. Furthermore, it
will be shown that a constant phase progression is achieved
simply by controlling the free-running frequencies of the
outermost array elements only. This new approach has the
additional advantage of distributing the RF source over a large
number of devices, thus eliminating the feed network entirely.

It should be mentioned that the present method bears some
resemblance to a previously proposed technique by Stephan
[4]-[5], who also used an array of coupled oscillators. In his
approach, two signals with a controlled phase difference, A
are injected into the opposite ends of the array. The resulting
phase difference between each of the N oscillators is then
found to be A¢/(N +1). Increasing the number of oscillators
in the array decreases the maximum available phase difference
between each oscillator, and the scanning range is quite limited
for even modest sized arrays. In contrast, the inter-element
phase shift obtained with the technique proposed in this paper
is independent of the number of oscillators, and can be varied
by nearly 180° for a fixed coupling angle.
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II. CouPLED OSCILLATOR THEORY

A successful theory of coupled oscillators must predict the
steady-state phase relationships in the array, and allow for an
investigation of stability. This generally requires a dynamic
analysis. Our previous work in oscillator arrays for power
combining [2], [16], [17] has shown that the arrays can be
described adequately by coupled van der Pol equations. In this
approach, a single oscillator is modelled by an RLC circuit,
with a voltage source to represent injected signals, and a
negative resistance to model the device. The circuit equations
are reduced to differential equations describing the amplitude
and instantaneous phase of the oscillator. The mutual interac-
tion between oscillators is described by a complex coupling
coefficient, which for coupling between oscillators ¢ and j
is written as sijefq’w. The equations describing the amplitude
and phase dynamics for an array of NV elements are then given
by [17]

dA, Wy W, il
E = E p,(a? - Alz)AH_ﬁ Jz::lb‘ijAJ COS(@ij +6; — 6,-)
(1a)
d; wi o A
b — _ el AP ) 0.
T 20 ;5” A sin(®;, + 6, — 8;) (ib)
where 7+ = 1, 2,..., N, and where A; is the instantaneous

amplitude, «; the free-running amplitude, w; is the free-
running frequency, and #; = w;t + ¢; is the instantaneous
phase of oscillator :. ;4 is an empirically determined parameter
describing the gain saturation mechanism in the oscillators,
and @ is the QJ-factor of the oscillator embedding circuits.
When ¢;;, = 0 the oscillators are uncoupled, and (1) reduces
to a set of independent sinusoidal oscillators with amplitudes
A; = «, and frequencies w;.

In this general form, each oscillator can be coupled to all
other oscillators in the array. However, the arrays discussed in
this paper are coupled by weak mutual interactions between the
antennas. This coupling occurs predominantly through free-
space, with a strength inversely proportional to the element
spacing. Because the coupling strength decreases rapidly with
distance, elements in the array will interact primarily with
adjacent elements. Accordingly, we shall discuss only nearest
neighbor coupling, with &,, = 0 for all | — j| # 1. Fur-
thermore, it is assumed that the coupling is reciprocal. If the
oscillators in the linear array are equidistant, then all of the
coupling terms are identical, and we may make the following
simplifications: ¢;; = ¢, and ®;; = ®. For loose coupling,
as is the case in radiatively coupled arrays, the amplitudes of
the oscillators do not change greatly from their free running
values in practice, and we can (to first order) disregard the
amplitude dynamics. The system is then described by

b, = w, — -2 § L sin(® +6; — 6,)
T vy - i — 0,
dt 2Q Pl A;
J#i
i=1,2,...,N (#))
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In practice, there is a maximum frequency difference within
which two oscillators will synchronize. For a single oscillator,
this locking bandwidth was found by Adler [11] to be

_ wi A
Awy, = 50 4,
where A;p, and A; represent the amplitudes of the injected
signal and :th oscillator signal respectively. An oscillator can
be injection-locked over a frequency range of +Aw,, around
its free-running value.

If all of the oscillator frequencies lie within some collective
locking bandwidth, then they will eventually synchronize to a
common frequency, wy, where df; / d¢ = wy in the steady-
state for all 7. This means that the final, steady-state frequency,
wy, is given by:

®3)

i+1
€
wf=w; |l —— L sin(®+ 6, —8;
f 2Q j;l Ai ( .7)
i
1=1,2,..., N (4)

These N equations allow us to solve for the steady-state phase
differences between each oscillator, given the free-running
frequencies and coupling parameters. Computer simulations
of (2) are usually necessary to compute the stable steady-state
phase difference between elements.

III. BEAM-SCANNING IN OSCILLATOR ARRAYS

A. Frequency Distribution

Electronic beam-scanning in antenna arrays requires a con-
stant phase progression along the array, such that §; — 6, 1 =
A for all 4. Substituting this condition into (4) yields

i+1
A
Wi = wj 1—¢ J:zz_l XZ sin(<I> + AH) (5)
J#L
where the new variable ¢’ = ¢/2Q was defined for con-

venience. For loose coupling or large Q-factors, ¢’ < 1,
which we assume in the following analysis. Furthermore, we
assume the oscillators have identical amplitudes for simplicity,
such that A, = 1, With these assumptions, (5) indicates that
a constant phase progression Af can be synthesized at a
frequency wy by the following distribution of free-running
frequencies:

well +€'sin(@+AF)] ifi=1
wi={ wrll+2'sinPcosANG] f1l<i<N (6)
wi[l 4+ &'sin(® — Af)] fi=N.

Note that all of the innermost oscillators share the same
frequency. For an array of oscillators with identical free
running frequencies, it was previously shown [2], [17] that
a broadside pattern (A# = 0°) is obtained with & = 0°, and
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an endfire pattern, (A8 = 180°), is obtained when ® = 180°.
For the special case of ® = 0°, (6) reduces to

we[l +&'sinAf] ifi=1
w; = § Wy ifl<i< N @
well —&’sinAf] ifi=N

and hence the inter-element phase shift is controlled only by
the free-running frequency of the end elements. Furthermore,
the synchronized frequency is equal to the free-running fre-
quency of the innermost oscillators. Thus by slightly adjusting
the free-running frequencies of the end elements in opposite
directions by an amount ¢’ws sin/A@, the radiation pattern can
be electronically scanned. Interestingly, this influence of end
elements on the phase distribution of an oscillator chain was
also observed in [8], where the oscillator array was used as a
phenomenological model for explaining the spinal locomotion
in eels. The resulting constant phase progression was inter-
preted as a travelling wave on the chain, corresponding to
swimming motion.

B. Stability Analysis

There is some ambiguity in (7) regarding the phase shift Ag,
which can be resolved by a stability analysis. This procedure
will then determine the limits of the scanning range. The
stability of nonlinear equations such as (2) can be investigated
by a perturbation analysis [2], [17]. Since the relative phase
shifts between oscillators is of interest, a dynamic equation for
the adjacent phase shifts is derived using (2), giving:

dNG;
dt

= w,[l — &' sin(® + Ab,) — &’ sin(P — Aby1)]
—w,_1[l — &' sin(® + Af,_1) — &’ sin(® — AB;)].
©®)

Assuming a steady-state solution, A@;, has been computed
from (5), we investigate the dynamics of the perturbed so-
lution, Ag; = Af; + 6;. The perturbation is small so that
siné; ~ §&; , which leads to the following set of linearized
equations for the perturbation:

dé;
— = a;6;—1 + b:6; + cibia

for ¢ =
7 ort=2,3,...,N (9

where

a, = € w,_1 cos(® + Ab)
b, = &'w, cos(® + Af) — 'w;_1 cos(P — AF)
¢, = £'w, cos(® — AF)

Equation (9) can be placed in matrix form, dé/dt = A6 where
§ is an N — 1 vector with elements 6; and A is the tridiagonal
coefficient matrix. Stability requires the perturbation to decay
with time, which is satisfied when the eigenvalues of the
coefficient matrix have negative real parts. The stability matrix
for @ = 0° is
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A=¢cosAf
—[O.Jf +w1] wf 0 0
Wy —2wy wy 0
0 Wy —2wy ... 0
0 0 0 wy —[Wf -}—u.)N]

(1n

which is real, symmetric, and diagonally dominant. The eigen-
values of such a matrix are negative if the matrix is negative-
definite [13]. This matrix is negative-definite if all of its
diagonal elements are less than zero. Examination of each
diagonal element in the stability matrix above reveals that they
will be negative if cos A > 0. Therefore the inter-element
phase shift is restricted to the range —90° < Af < 90° when
® = (°. Similar analyses can be carried out for other values
of ®, resulting in a different range of allowable phase-shifts.

The relationship between the successive phase shifts and
the scan angle is

2md

Af = )\—0 sin U

(12)

where ¥ is the scan angle measured from broadside, d is the
physical separation between adjacent elements, and g is the
wavelength of interest. Using (6), (9), and (11) allows us to
compute the frequency distribution required to synthesize a
desired scan angle. The range of scan coverage is determined
by the coupling phase and antenna spacing. For example, an
array with d = )¢/2 has a maximum coverage of £30°
from broadside when the coupling phase is zero. A greater
scan range can be obtained with smaller antenna spacing.
Alternatively, scan coverage can be increased by electronically
controlling the coupling phase, but this essentially defeats the
purpose of the proposed concept. Note also that we have
neglected the issue of scan blindness in planar arrays [14]
in this discussion, which will impose additional constraints on
the maximum allowable scan coverage.

The angular resolution for this array is set by the stability
and accuracy of the Voltage-Controlled Oscillators (VCO’s) on
the array periphery. Equation (6) indicates that the required
tuning range for the VCO’s is dependent on the coupling
parameter, £’ In the case of extremely weak coupling, ¢’ <<
1, very small frequency differences can give rise to large phase
shifts. In that case, a set of very stable and uniformly similar
oscillators would be required, and the modulation bandwidth
would be small. Therefore moderately strong coupling is de-
sired, and efforts are currently underway to determine effective
techniques for increasing inter-oscillator coupling.

IV. EXPERIMENTAL RESULTS

The theoretical predictions were tested using a four-element,
radiatively-coupled active patch array based on the design
described in [15] (which was chosen for simplicity). The array
(Fig. 2) used 0.787 mm thick Rogers Duroid 5880 substrate
with ¢, = 2.2, and used NE32184A low-noise GaAs FETSs.
The width, W, and length, L, of each patch antenna were
4.56 mm and 11.88 mm, respectively. These dimensions
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Fig. 2. Diagram illustrating the experimental four element FET array. A
simple active patch design using zero gate bias was used [16], with dimensions
chosen empirically for operation at 10 GHz. An array spacing of d = 0.86)¢g
was used to give the desired angle of coupling (see Fig-3).

W

—d —o 2

were chosen empirically so that the oscillator would be bias-
tunable over a range of frequencies centered about 10 GHz.
The FET source lead was grounded through a via hole in the
substrate; in this particular design the frequency and tuning
range was very sensitive to the inductance of the source lead.
To simplify the biasing, the oscillator was designed to operate
at V;; = 0, with a DC return path to ground provided by a
quarter-wavelength shorted stub, connected to the circuit at
a low-impedance point. Drain bias was supplied through a
typical bias network consisting of a high impedance 5A/4 line,
followed by a quarter-wavelength impedance bonding pad.

The most critical parameter in the design of this array was
the oscillator separation, which determines both the coupling
strength and the coupling phase as well as the scanning
range. An imaging technique [16] was used to characterize the
coupling parameters as follows: a single active patch was tuned
to a free-running frequency of 10 GHz; the patch antenna was
then positioned near a vertical ground plane so that its surface
current flowed parallel to the ground plane, thus simulating
two identical, out-of-phase, coupled oscillators; as the position
of the patch antenna was varied, a frequency shift is observed
which can be related to the coupling parameters [16]. The
results are shown in Fig. 3, and indicate that a center-to-center
spacing of d = 0.86)¢ was required to obtain ® = 0°. This
limits the theoretical maximum scan coverage to +17° for
this array.

The individual bias to each element allowed us to es-
tablish the free-running frequencies prescribed in (7) for a
given scan angle through bias tuning. Several array pat-
terns were measured for various frequency distributions, and
some of the results are shown in Fig. 4-5. It was possible
to continuously scan the radiation pattern from —13° to
+12.5° by adjusting the end-element frequencies only. This
compares favorably with the predicted scan range of +17°,
and corresponds to an inter-element phase-shift range of
—80° < A# < 66°. Figure 4a shows the measured broad-
side patterns, obtained by setting all the oscillators’ natural
frequencies to 10.000 GHz. When the pattern was scanned to
—15° (figure 4c), the frequencies of the end elements were
10.0075 GHz and 9.9925 GHz. Figure 4b shows an interme-
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Fig. 3. Measured output frequency of a two-oscillator system (single oscil-
lator imaged by a vertical ground plane) versus antenna separation. Using
a simple first order model described in [16], this frequency shift can be
related to the coupling parameters with good correlation between theory
and measurement.

diate case. In the case of +12.5° scan angle (Fig. 5), the
frequencies of the end elements in the array were 9.985 GHz
and 10.015 GHz, respectively.

The slight asymmetry in the results suggest at least two
things: that the inter-element coupling phase was not exactly
zero as intended, and that the oscillators are not modelled
exactly by the Van der Pol equation. A simple experiment
using two of the array elements was then conducted to deter-
mine the actual coupling phase. When the two oscillators were
each tuned to the same free-running frequency of 10 GHz,
the measured radiation pattern was clearly broadside but a
steady-state output frequency of 9.9408 GHz was observed.
This frequency shift indicates that the coupling phase, ®, was
not zero as desired. This discrepancy is probably a result
of mutual coupling through the substrate (surface waves)
which was not faithfully reproduced by the imaging method of
[16]. Additional fitting to the measurements indicated that the
coupling phase, ®, was approximately 18°, and the coupling
parameter, ¢, was 0.008. The theoretical radiation patterns
shown in Fig. 4 were then computed by substituting these
coupling parameters into (5), solving for the predicted phase
shifts, and multiplying the theoretical array factor with the
measured pattern of a single patch. The figures indicate very
good agreement between the measurement and theory.

V. CONCLUSIONS

A new technique for electronic beam scanning has been
presented that eliminates the need for phase shifters. This
technique and its limitations can be explored using coupled-
oscillator theory, and was tested in simple fashion using a
4 x 1 linear array of active patch antennas. By adjusting the
frequencies of the end oscillators in the chain, the radiation
pattern could be continuously steered over a range of angles
from —15° to +12.5°. The measured scan range is actually
very close to the theoretical limit for this particular array, due
to the abnormally large antenna spacing that was used. Some
small discrepancies were observed between the theory and
experiment as a result of nonuniform oscillator amplitudes, the
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Fig. 4. Correlation between theory and experiment for three different scan
angles. (a) Measured and theoretical broadside patterns, obtained when all
oscillators have identical frequencies. Measured and theoretical patterns for
(b) —10° and (c) —15° similarly show good agreement.

simplicity of the modelling, and incorrect coupling parameters,
but overall the results are encouraging. Indeed, the fact that
our crude array worked at all suggests that the concept is
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angles. Continuous beam scanning was possible from —15° to +12.5°
by adjusting the end-element frequencies, which is close to the maximum
+17° predicted by the theory. The scan range was limited by the large
antenna spacing.

fairly robust, and that extremely tight tolerances would not be
required in a practical array.

This new method could be very useful in future mono-
lithic millimeter-wave phased-array modules, where substrate
space is scarce, and should be much easier to calibrate than
conventional phased artays since only two control signals
are used. For use in a practical system, other features of
the array remain to be studied. These include the scanning
speed of the array, and the modulation bandwidth. It is likely
that there is an important scan range/bandwidth tradeoff in
this approach. The effects of randomness in the frequency
distribution is another important issue, since it will of course
be impossible to fabricate a large array of oscillators with
identical free-running frequencies. Another interesting concept
to investigate is the effects of amplitude tapering on the
operation of the array, which would be important in low-
sidelobe applications. Methods for increasing the coupling
strength would also be beneficial, since this would permit more
coarse frequency control. The concept should also be explored
for two dimensional arrays, for possible scanning in azimuth
and elevation.
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